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Reduced Maxwell-Duffing description of extremely short pulses in nonresonant media
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The propagation of extremely short pulses of an electromagnetiq&ileldtromagnetic spikgss considered
in the framework of a model wherein the material medium is represented by anharmonic oscillators with cubic
nonlinearities(Duffing mode) and waves can propagate only in the right direction. The system of reduced
Maxwell-Duffing equations admits two families of exact analytical solutions in the form of solitary waves.
These are bright spikes propagating on a zero background, and bright and dark spikes propagating on a nonzero
background. We find that these steady-state pulses are stable in terms of boundedness of the Hamiltonian.
Direct simulations demonstrate that these pulses are very robust against perturbations. We find that a high-
frequency modulated electromagnetic pulse evolves into a breather-like one. Conversely, a low frequency pulse
transforms into a quasiharmonic wave.
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[. INTRODUCTION Bloch equations transforms into theduced Maxwell-Bloch
(RMB) equationd2—4].

. : . . The inverse scattering transform method gives an exact
field, which contain a few optical cycles, down to even halfg., vion of the RMB equations which describes the multiple

a cycle have recently attracted a great deal of atter]tion(:ollision of N solitons with different velocitie§3,4]. The

Much work has already been done on the theory of inter"?‘CHamiItonian formulation of the RMB equations was consid-

Bled in[29]. Ther-matrix was found and it was shown that

the Poisson brackets are not ultralocal, contrary to the
McCall-Hahn equation describing the propagation of coher-
Bnt ultrashort pulses in the slowly varying envelope and
hase approximation. However, the RMB equations repre-
ent a more general completely integrable Hamiltonian sys-

Extremely short pulsedESP$ of the electromagnetic

[1-15 or a nonresonant mediufi6-24. Surveys can be
found in[25-28§.

As is customary, the description of the ESP evolution use
the total Maxwell equations without assuming a separatio
into a carrier wave and an envelope. Generally, the Maxwel
equations admit the propagation of electromagnetic waves i
both directions. If, however, the nonlinear contribution to the
polarization of the medium is small, thaidirectional wave
propagationmay be assumel@®,4—6 (see alsd7,10| for the

Exact multisoliton solutions of the RMB equations that
incorporate the effect of a permanent dipf#g were found
X in [10,11]. In particular, these solutions are good examples of
resonant case arids, 19 for the nonresonant om.eTh'S ap- unipolar, nonoscillating electromagnetic solitons, commonly
proximation reduces the wave equation to a first-order one. ¢ ..o to as “electromagnetic bubbles.”
W't.h(.JUt any assumption abo%“ the shape OT th? waves. The The validity of the two-level approximation in the inter-
unidirectional wave propagation approximation is freq”emlyaction of atoms with few-cycle light pulses was studied in

lused for the S”.““'a“or? of ESP propagation in a homoge[ls] by considering a simple three-level atom model. It was
neous Iow_densny mediurf22,27. . . pointed out that even if the transition frequency between the
The typical models of the nonllnear.med|u'm are the en'ground state and the third level is far away from the spec-
sembles ofN-level atoms or anharmonic oscillators. If the (., of the pulse, this additional transition can make the
Go-level approximation inaccurate. When decreasing the
; L e;5u|se width or increasing the pulse area, the two-level ap-
only two levels. Thus, we obtaithe approximation of the - oo imation will give rise to non-negligible errors compared
two-level qtom,swhmh is very pqpulgr in _resonant. and co- with the precise results.
herent optics. The wave equation In this case is compl_e- The recent investigation of the propagation of an attosec-
mented by the Bloch equz_;\tl_ons _for the two-level atom vari-on 4 pulse in a dense two-level meditjdv] shows that the
ables. When the unidirectional ~wave propagationg,nqard area theorem breaks down even for small-area
approximation is taken into account, the total Maxwell-  1se5 |deal self-induced transparency cannot occur even for
a 2 pulse while pulses whose area is not an integer multiple
of 27r cannot evolve to 2 pulses, as predicted by the stan-

frequency, we can omit all nonresonant levels and consid

*Electronic address: weltcom@mail.ru dard area theorem. Significantly higher spectral components
"Electronic address: amaimistov@hotmail.com can occur on all these small-area propagating pulses due to a
*Electronic address: caputo@insa-rouen.fr strong carrier reshaping.
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Solitary wave propagation in the total Maxwell-Bloch ESPs in a nonlinear dispersive medium modeled by anhar-
equations was discussed [ih3] assuming optical subcycle monic oscillators with cubic nonlinearities. The paper is
pulses interacting with a dense medium of two-level atomsstructured as follows. The model is derived in Sec. Il. Dy-
A large blueshift in the transmitted pulse and a large redshifhamical invariants or integrals of motion are given in Sec.
in the reflected pulse are predicted using intrapulse fourf|. Two families of moving ESP solutions are found analyti-
wave mixing. ) . __ cally and confirmed using Hirota bilinear forms in Sec. IV. In

It should be pointed out that when the atomic density isgec. v the stability of the steady-state solutions of the RMD
such that there are many atoms within a cubic resonancgyations is considered using the variational method. We
wavelength, the near-dipole-dipole interactions—which lead, e stability of the steady-state ESPs by using the bound-
to local-field corrections—cannot be neglected. Hence, in dness of the Hamiltonian for a fixed total moment. The

dense two-level medium, the Maxwell-Bloch equations : . i :
- ' . propagation of the pulses and their collisidifizr both signs
should be modified as was done([B0-37 (see alsd33]). of the polarity of the colliding pulsgsare investigated nu-

Thus the generalization of the RMB equations taking into__ . : !
account the many-levels atom and/or the dipole-dipole intermer'cally in Sec. VI. We conclude in Sec. VII.
actions usually destroys complete integrability. This is the
price of the desired generalization. Furthermore, in a strong  Il. THE REDUCED MAXWELL-DUFFING MODEL
electromagnetic field the picture of energy levels, related ) ) ) _
with an initial unperturbated Hamiltonian may be not correct. The one-dimensional propagation of electromagnetic
There are different attempts to describe the nonlinear propa¥aves in a nonlinear medium is governed by the wave equa-
gation and interaction of electromagnetic pulses in transpaitton
ent medium beyond the resonant systems. 5
One of these approaches is to describe the nonlinear dy- FE_1FE _ 47 P 1)
namics of the medium driven by the electromagnetic field 02 a2 c? a2’
using anharmonic oscillators. In particular, the propagation
of a linearly polarized ESP was considergil,23 using  WhereP is the polarization of the medium. According to the
Duffing oscillators so that the nonlinear response of the meunidirectional wave approximation E¢l) can be replaced
dium is cubic. This is the simplest generalization of the Lor-by the first-order equatiof6,27)
entz model which has been very useful to describe the propa-
gation of an electromagnetic wave in a linear medium. JE 1B _ 2mwiP
Recently, the Lorentz oscillator model was employ2#] to Jz * cat c o’ (2)
account for a linear retarded response of the medium and a
nonlinear oscillator was considered to describe an instanta- We adopt a simple anharmonic-oscillator model for the
neous Kerr nonlinearity. The Duffing model takes into ac-medium, which is commonly used to approximate the me-
count the dispersion properties of both the linear and nonlindium response for an electromagnetic influef84 (see also
ear responses of the medium so that it may represent bettg85]). Here we will consider the oscillator with cubic anhar-
the nonlinear response on an electromagnetic pulse contaimonicity. In addition, we will assume the case of a homoge-
ing a few cycles. neous broadening medium, where all atoms have the same
In some cases the anharmonic oscillator model can bparameters. IX represents the displacement of an electron
derived from the two-level atoms model. For example, infrom its equilibrium position, the equation of moti¢which
[27] the RMB equations were transformed into a modifiedneglects friction can be written as
Korteweg—de Vries equation. One can develop the procedure
of derivation of the series of complete integrable equations 2 3_ ¢
from the RMB. On another hand, we can start from the oz ook KaX ‘IE' 3)
. . . ff
Heisenberg equations for the operator of the displacement of
an electron from its equilibrium position. After calculation of wherew is an eigenfrequency of the oscillates is anhar-
the expected values of this variable, omitting the quantunmonicity coefficientsm.s;=3m/(s+2) is the effective mass
correlations effects, we can obtain the classical equation aff the electron. Hereafter, we will use as a symbol for this
motion for the(strongly anharmonic oscillator. In this way effective mass and the symboblenotes the electron charge.
we do not use the two-levébr N-level) atom representation. Finally, the dynamical variablX is related to the medium
The Duffing oscillator is the simplest variant of this model, polarization,P=n,eX, wheren, is the density of oscillators
in which only the weak nonlinear response of a medium iSatoms.
accounted for. This model cannot describe a number of ef- It is suitable to use as independent variableg/I, x
fects seen in a strong field of ESPs; for example, the ioniza=wy(t-z/c), and to normalize the dependent variables
tion. More complete representations should be developed ugfields) by
ing a more realistic potential. The wave equation assuming
the unidirectional wave propagation approximation and the e=E/A;,, q=X/X,, (4)
Duffing oscillator equation for the medium form a system of
equations called theeduced Maxwell-DuffingRMD) equa-  Where
tions by analogy with the reduced Maxwell-Bloch equations. _
The objective of the present work is to study the unidirec- 20~ MawgXo/e = Mage (2l k)2 Xo= (2uw|s) ™,
tional propagation and interactions of linearly polarized (5)
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@2_12_3_#4]
<ax> AR (13

1

171 = 27nae?/(Maw,) = wﬁ/cho, (6) H= fm [ 5

and w,=(4mnxe?/m)Y/2 is the plasma frequency. In terms of o0

the rescaled variables, Eq®) and(3) take the form The Hamiltonian is the first integral of motion of the
g daq q

- RMD equations. An additional integral of motion is the total

a kAt 2uq =e, (") moment associated with the fiell that one may check on
the basis of the RMD equatiorg):

with the single remaining parametep2 «sX5/ 3. The two

Egs.(7) are the final form of the model. In the following we (™ ("
will refer to them as reduced Maxwell-Duffing equations. 1= . e(t,x)dx = . ¢t X)dx

Ill. LAGRANGIAN AND INTEGRALS OF MOTION = ¢(t,x =) — P(t,x=— ). (14)

The system of RMD equations can be derived as therne magnitude of this integral is defined by the boundary
Euler-Lagrange equations from the action functional conditions only, thus, it can be interpreted as a topological

charge in the Maxwell-Duffing model.
S:f L[q, $ldxdt, A third integral can be found by the following. Using the
canonical moment one can rewrite E¢8) as
where the Lagrangian density is )
am 14q 1(/97q
1ogad 1(oq\2 1, w, db —f=-"— my=| 5+ 2ud’).
c[q,¢]=———+—(—) -ow-SdtraT @) o2 2\ax
20x dt 2\ X 2 2 X

o o . From the first equation of this system it follows that
Application of the variational procedure to the acti&

yields equations Iy _ 1loq
7T¢ - 7T¢5_ .
(72_¢ + @ =0 @ +0+2 3 — (9_¢ (9) A X
A, S a+eud ox Taking into account the second equation, one can obtain the
expression

Identifying ¢ as a potential for the fieldg ande, so thatq
=-J¢ldt ande=d¢p/x, makes these equations identical to I 19| (oq\2

the system of Eq<7), which can be further transformed into —¢=-— (—> 2 N
the single equation

aq o L4 #q Thus, one obtains the third integral of motion
—+—+6ug"— +———5=0. (10 - -
ax A dtox 5 1 5. g\
I,= my(t,x)dx = — q+2ug’+—— | dx.
From the Lagrangian densi{{8) we can obtain the den- —o 4)_. X
sity of moments of the fieldg andq: (15)
L 1 1 oL . . . .
Tt X) = —— =2, (t,X) = Ze(t,x), m(t,x)=——=0. Taking into account the relatiofll), this integral may be
gy 27 2 a4 interpreted as a “pulse energy”
(11) +oo
The density of the canonical Hamiltonian for this dynami- 4p= f (t,x)dx. (16)
cal system can be obtained frofnhby means of the standard -
Legendre transformation It is important to understand the physical contents of these
oL oL 1/9q\2 1 integrals of motion. It should be pointed out that the La-
H=—0c¢+—q-L=- _(_q) + -0+ Eq“ -eq. grangian of the RMD model is an example of a degenerate
dpy " oy 2\ox) 27 2 Lagrangian system. The expressiongiify indicate that this
Thus, the Hamiltonian is Lagrangian leads to a constrained Hamiltonian system,

i ) where m,(t,x)=(1/2)¢,(t,x) and m(t,x)=0 is the primary
_ 15 1, M4 constraint{36]. The conservation of total mome(it4) cor-
H= +-g°+-q" —eq|dx. (12 ) X . .
o 2\ 9x 2 2 responds to the invariance of the system under consideration
) o ) ) with respect to a shift of the fielg(t,x) by a constant. It is
The variablee can be eliminated from it, using RMD ot 3 space translation symmetry, as it usually occurs, when

equations, so that referring to the moment.
a( oq\ 1fag\*> 1, 3u, To conside_r t.he space-time translation symmetry of the
H:_a_x q& +§ x —Eq —?q ‘ RMD model, it is suitable to denote new variablgs=t,

y,=x and u;=¢, U,=q. For any system, if the space-time
Omitting the full derivative, the Hamiltonian corresponding variables are not explicitly included in the Lagrangian, there
to the density(13) takes the form are the conservation laws of the form
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d d’q
> ZTk=0, (17) — +(1-a)q+2ug®=0. (23
o2 M | do?
Where the energy_moment tens'd‘ris denoted as If a>1 and/,L> O, th|S equation haS a fam"y Of exact SOIU'
tions parametrized by the continuopssitive parametera
L -1 and discrete one, as
=2 . i = L. ,
a=1,2 "ak q(t,x) = £ V(a— D/wsectiv(a - 1)(x—tla = Xp)],
Here,u,;=du,/dy;. In the case of the RMD model, we have (29
two integrals of motion resulting fror(iL7) as
+0 o0 e(t,x) = + aV(a— 1)/ u sechy(a— 1) (x—t/a—xy)].
Q= f Tidx Q= f Todx. (18) (25)

Expression25) corresponds to the one spike of the electro-

magnetic field, propagating without form distortion in a non-
Y\ 1, om0 L 1{ap)? resonant medium with cubic nonlinearity.

Ti= Y Eq Eq —OI& T;= ol X There is an alternative method to obtain the steady-state

X solution of Eqgs.(7), wherein the assumptiofl9) is not in

The substitution of these expressions into integral¢l8j  use. The method follows from the observation that system

leads toQ,=H, Q,=-2I,. Thus, we obtain the interpretation (7) can be represented in bilinear form by Hirota. If the sub-

integralsl, andH as the total moment and total energy, re- stitutions

By using the Lagrangiaf8) one can find

spectively, in the RMD model. Unlike the total canonical _ _

momentl,, the total moment -2 reflects the invariance of e=alh, q=bh (26)

the RMD model with respect to space translation. are used, then Eqg$7) can be rewritten as
Dia-h)+Dy(b-h)=0, (27)

IV. ANALYTICAL SOLUTIONS FOR

THE EXTREMELY SHORT PULSES D)2<(b -h) = ah- bh, (28)

It seems plausible that the system of RMD equations is
not integrable. Nevertheless, some exact analytical solutions, D)Z((h -h) = 2ub?, (29
describing the propagation of ESPs without destruction, can
be found. In order to obtain these steady-state solutions, on
should assume tha andq depend on a single variable, as

here Hirota's  D-operators  D,(a-b)=lim,_ ./ (dy
dy)a(x)b(x’) [37], and so on, were used.

Let us make the usual assumption to solve equations
n=X-tla= wy(t-2zCc), (19 (27)—~(29) [37,39:

with some constant. An expression for the velocity of a a=aexpd), b=Bexpd), h=1+h;exp6) +h,exp26),

steadily moving pulse then follows from E€f), given by where 6=kx—Qt. The substitution of these expressions into

vi=c1 +(1/2a)(wp/w0)2], (20) (27<29) results in algebraic equations with respect to
exp(#). Equating the coefficients of the different powers of

Hence, the parameter defines the velocity of the steady g,y ) 1o zero, one can obtain the system of equations defin-
state ESP and we should obtain a one-parametric family %g a, b, hy, andh,. From (27), we getaQ—-pgk=0. From

exact analytical solutions of the RMD equations. In general(28) two conditions follow:h,=0 andgk?= - B. These ex-
choosing the boundary conditions results in different solu-, reésions lead to the “disbelrsion relation” '
tions of these equations. Here we restrict our attention t(?

solitary wave solutions. Q=Kk(1+k. (30)
Equation (29) yields three relationsh;k?=0, 4h,k?=u3?,
A. Steady state pulse on a zero background and h;h,k?=0. As h;=0, we have only the second relation
Let us consider the following initial and boundary condi- defining hy; i.e., h,=u(B/2k)%. Thus, we find a one-soliton
tions: solution of the bilinear equation27)—(29)
e(t=0,x) = ey(x), a=(1+k)Bexp), b=pexpo),
and h=1+u(B/2k)? exp26).

- - - These relations yield the solution of Ed%), which is cor-
x) =0, t,x) =dq(t,x)/ox=0, atx— oo, (21 ) : :
€l a(t,x) = d(tx) —te (2D related with the steady-state one that was obtained earlier:

_ B exp(6) s (1+K)Bexp o)
e(t,x) = aq(t,x). (22 O w20 exp26) S 1+ u(Bl2K2 exp20)
Next, the second equation from the syst@intakes the form (3D

The first equation of the syste(#) can be integrated to yield
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If we introduce the parameteq, rather thanB according ou of  f ) 5 o3
to B=2u2exp(kx), and definea=1+k?, expressiong31) T w2t f+2u(305f + 3qpf“ + ) =u. (33)
can be written in the form of24) and(25).

It should be remarked that dispersion relation of this soli- Looking for a steady state solution 83), we obtain
tons(30) differs from the dispersion relation for linear waves 42f
in this model:Q=k/(1-k?). — + (1 - ay)f + 6uqf2+2uf=0, (34)

It would be interesting to find the two-soliton solution of dy
the bilinear equationt27)+29). However, the standard ap- \here a;=a-6u2 Integrating this equation once, taking

proach[37,38 is not successful. This may indicate that therejniq account zero boundary conditions, one obtains
are neither two- nor more-soliton solutions of the system of

: 2
RMD equations. (?) = (g~ 1P = Ay — uf*. 35)
n
B. Steady-state pulse on a nonzero background The substitution of =1/y transforms this into the following
If the medium is first polarized by a continuum electric equation:
field, the oscillator coordinate is shifted from the equilibrium dv\2
position(i.e., atoms have a constant electronic polarizability (_y) =(a; - D(y-yo)?-A7],
induced by the external electric figld_et us denote this new dn

position asq,. The initial and boundary conditions can be

written as where , )
et = 0X) = ey(¥), Yo=2udo(a; =17 A?=pu(a;-1D7H+y; (36
The substitutiory=y,+ A coshe reduces this equation to the
and trivial onede/d7n=(a;—1)"2 Thus, we have the solution of
€= 0o+ 2ud, q(t,x)=qo, q(t,x)/dx=0, forx— *o=. Eq. (35 written as

(32) f(t,x) ={yox A coshiv(a; - D(n- )} (37)

We introduce the variables=q—g, and u=e-g,, which  If q,— 0 this expression reproduces the form(@a). The
approach zero at infinity. This results in the following equa-electric field of the electromagnetic wave is given by the
tions: following expression:

I _ a(al - 1)
e(t,x) = eg+ afyo A cosliv(a; — 1)(n-m)} =gy + ,, , :
2udo+ Vplay — 1) + 4uPg costv(ay = 1) (7= )]

(38)

The plus sign in(38) corresponds to a bright spike of the with time and coordinate. For this solution we have the fol-
electromagnetic field on a constant background; the minukwing relations:
sign in (38) corresponds to a dark solitary wave: the narrow
hole propagating on background.
Now we can consider the special case when the parameter 40,

ay is equal unity. Equationi35) then takes the form q(t.) = 0o - 1+ 4 (x - U xo)2 (41)
df |2 3 4
dn) = Apdof” — pf™. (39
K and
Substitution of f=-1/y transforms it into (dy/dz)?
=u(4qpy—1), the integral of which leads to the following 5
i : 404(1+6
expression forf: &(t,X) = G + 20168 - Go(1 + 6uqp) (42)

1+ 4ugf(x ~tha = xp)*

f(t,x) = ~ 4%

= ) 40
1+4,uqé(x—t/a—x0)2 (40)

Note that when the initial medium statg is large, the
amplitude of the electric field is much larger than the me-
Here, X, is the constant of integration which indicates thedium variable. Foigy>1 we have a dark solitary wave hav-
location of the maximum of the steady-state dark pulse. Onéng a bright spot in the center, while fop<-1 we have a
may name this pulse "algebraic soliton,” due to its decay rateolitary wave superimposed on a nonzero background.
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V. STABILITY OF A STEADY-STATE PULSE
ON A ZERO BACKGROUND

The problem of the stability of the steady-state solutions
of the RMD equations can be considered with variational
methodg 39]. For that we introduce the following functional:

Wael=H+ 21, (@3

where the Hamiltonian is taken in the foift2). In the varia-

PHYSICAL REVIEW E 71, 056622(2009

=1 |minH(\)|=|H|. Hence,|min H(\)|=|H|. The substitu-
tion of (50) into (49) results in

9M2W421>

~ 1
minH(\) = - —<W2 +
2 AW,
To estimate the integral, we can use the inequaliiL.39

from [39]:

tion of W[q, e] the fieldsq ande are considered to be inde- Using the inequality

pendent resulting, in
SW= - @+ +2uq® - e | sqdx+ o —qglétd
=) | pe At 2ud - e | dudx _w[aeq] X,

Thus, the variational probledW=0 leads to the Eq422)

and(23). In this section we will use instead of the variable
n=x-t/a. Multiplying Eq. (23) by q and integrating it over

X, we obtain
- W, — bW, + 2uW, = 0, (44)

whereb=a-1, and
+oo (9q 2 +o0
lef (5) dx, Wn:J g'dx, n=2 (45

Multiplying Eq. (23) by xd,q and integrating it ovex, we

W, < 2WiAW8"2, (51)
~ 1 OuPWA
|H|s|minH()\)|s—(|W2|+ ~ 4‘),
2 AW,
and (51), we obtain
W.
[HI = S0+ 9u?W5) (52)

As the Hamiltonian is bounded from below, the functional
W is bounded as well. According to Lyapunov’s theorem, this
proves stability of the steady-state solutid2d).

To consider the stability of the steady-state solutions with
nonzero boundary conditior{88), we should start from Egs.
(33) and find the functional that would be minimized by the
solutions of Eq.(34). In this way we could obtain the non-
linearity that is smaller thag®. This corresponds to the prob-

obtain after some manipulations the other relation betweefem discussed if40]. The principal role in the analysis is

the integrals under consideration:

W; — bW, + W, = 0. (46)
Combining(44) and (46), we obtain
W, =bWa/3, W, = 2bWA/3, (47)
and
H=—(5a- 2)W,/6. (48)

due to the integral,. The steady-state ESB9) is also seen
to be stable. We will confirm this using a numerical simula-
tion.

VI. NUMERICAL SIMULATION OF THE PROPAGATION
AND COLLISIONS OF THE PULSES

The propagation and interaction of the steady-state pulses
in the dispersive medium with both quadratic and quadratic-

One can check that the Hamiltonidi3) takes the same cubic nonlinearities were thoroughly studied ja8,19.

value as(48). Thus, the Hamiltonian is negative far>1.
Using formula(47), one can findV=-bW,/3<0 as well.

To solve the problem of stability of steady-state solutions,

There, direct simulations demonstrated the strong stability of
the pulses against various perturbations.
Here we have considered the cubic nonlinear medium and

we can use Lyapunov’s theorem which, in the case of boundound two types of steady-state pulses: an electromagnetic

edness of the Hamiltoniafor any suitable functionalfrom

spike propagating in a ground state medium and a pulse

gbove or below, gives ab'sqlute stability to a solution realizpropagating in a medium polarized by a constant electric
ing a maximum or a minimum. Now we prove that the field. In this last case, the electromagnetic pulse propagates

Hamiltonian is bounded from below far> 1.

steadily over the constant electric background. In the case of

Let us consider the scaling transformation containingzero background, we obtain a one-parameter family of stable

1,: q(x) — A2q(Ax) [39,40, for which the Hamiltoniar(13)
becomes a function of the parameler

HO\) = nglv W, = 3uW,\). (49)

When\—1 we haveﬁ()\)HH. An extremum ofF|()\) is
attained at the point

)\O = 3,(LW4/2W1 (50)

As d2H(\)/d\2=W; >0, at this point the functiofl(\) has a
minimum. For\g#1 we have|minH(\)|>|H| and for \

solutions. The perturbationfor example, collisions can
transform one of them into another member of this family.
Frequently, a collision results in radiation of quasiharmonic
waves. In addition, we cannot rule out the existence of non-
steady-state solutions, apart from the ones we found, which
are not stable but are long-lived. Numerical simulations may
be useful to study this particular aspect.

For this purpose, we write the systdi) in the following
form:

(53

056622-6



REDUCED MAXWELL-DUFFING DESCRIPTION OE. PHYSICAL REVIEW E 71, 056622(2005

100 mara 300
e 80 HHHH
10 % e f Hi g 200
5 o' 14 @g E t
%0 , 100
% 20 @ NI N 7
0 50 . 100 150

FIG. 1. Collision between two bright steady-state pulses on a _ _
zero background. Their relative velocities differ sufficiently and the ~ FIG. 2. Energy exchange between two bright pulses traveling at
interaction does not change their shapes. The parametér 3. very close velocitiega=2 anda=2.4).

Korteweg—de Vries equatiof38]. Numerical simulations
aq mp 3 show that the collisions between pulses are almost elastic
PV VL Z (54) independently of the polarities as long as the amplitudes are
_ o - different. This is in contrast to the collision between pulses in
Given initial conditionsq(t=0,x), p(t=0,x), ande(t=0,X)  the quadratic-cubic nonlinear mediuih9]. This difference
and boundary conditionsg(t,X)=do, (do=0 or dp#0)  can be due to the symmetry of the Hamiltonidr®) of the
aq(t,x)/ 9x=0, for x— +oo, the basic algorithm is the follow- cubic Maxwell-Duffing model, which is different from the

ing: case 0f{18,19.
(1) integrate(53) in t to obtaine(dt,x), Increasing the initial pulse energy beyond the energy of
(2) integrate(54) in x to obtaing(dt,x+dx), p(dt,x+dx), the steady-state pulse results in its decay into one or more
(3) go to step 1. steady-state pulse@lepending on the initial pulse enejgy

One can use any technique of numerical integration ofind radiation. The formation of a steady-state pulse from an
ordinary differential equations to solve this system botlx in arbitrary initial (smooth pulse also illustrates the stability of
andt. We employed the fourth-order Runge-Kutta routine.the solitary waves under consideration.

As initial conditions, we took the analytical solutions given  To summarize this study of the collisions between two
by Egs.(25) and(38) att=0. spikes, one can say that the result of the collision of the two
spikes depends only weakly on the difference of the pulse
widths. The two spikes can penetrate through each other
without appreciable changes, if their widths are different

In this subsection we consider the stability of the steadyenough. However, the collision leads to more interesting re-
state solutions corresponding to spikes propagating in norsults when the pulses velocities are close. In this case the
polarized media, where the oscillators are initially in theenergy due to the decay of the smaller puisespective of
ground state. In this case the initial and boundary conditiongts polarity) is transferred to the larger pulse and a small
in the numerical simulations have been chosefi24s with  solitary wave appears during the interaction process.
ey(x) defined by the expressid@5). Below, the parametex The stability of the pulses under weak perturbatidres,
is set to 0.3 unless otherwise indicated. As the velocities o& low-amplitude harmonic wave packét also very interest-
the pulses are determined by their widths, the angle of théng. We find that the steady-state pulses under consideration
trajectories in thex,t) plane, and therefore the interaction appear to be stable in this sense. To conclude, our investiga-
time of the pulses can be modified by choosing their initialtion demonstrates that the steady-state solutions of the RMD
widths. equations on a zero background behave similarly to solitons

For equal polarities, if the relative velocities of the collid- of completely integrable models.
ing pulses are considerably different, the pulses do not
change their form and velocity after interaction. Figure 1
shows the collision of two bright spike solutions(@6) with In the absence of an electromagnetic wave, a medium
a=2 anda=4. Strictly speaking, the solitary wave solutions polarized by a constant electric field is stable. For this model
of the model under consideration are not solitons since thé can be shown that small perturbations of the background
system of Eqs(7) has no Painlevé properti¢d1], but nu-  are not amplified so that there is no modulational instability.
merical simulations prove that these steady-state pulses col- Now let us consider the stability of the steady-state elec-
lide almost elastically. tromagnetic spikes we found propagating on such a back-

When decreasing the relative velocities of the collidingground. The initial and boundary conditions have been cho-
pulses, which are chosen with equal polarities, a strong musen ag32), where the initial solitary pulse has the following
tual energy exchange takes place and the two collidingorm:
pulses never completely overlap. Figure 2 is a typical picture _ _ N -1
illustrating this result, which is quite similar to the classical Ssoft=0.X) =&+ adyo £ A Cosliv(ay = 1)(7 = mo) ]}
description of collisions between solitons in the modifiedwith A defined by(36).

A. Propagation of pulses on a zero background

B. Pulse propagation on a nonzero background

056622-7



KAZANTSEVA, MAIMISTOV, AND CAPUTO PHYSICAL REVIEW E 71, 056622(20095

/ot e F
0 0
0 0 20 40 _o60 80 100
300 X
/ FIG. 5. Formation of steady-state pulses from a high-energy
l initial pulse in a polarized medium.

e(t=0,x) =g, (t=0,x— 15

+0.59(x - 30) - ¥(x - 40)]cos 5
where 9(x) is the Heaviside step-like functior}(x)=0 if x
<0, andd(x)=1 if x> 0. This steady-state pulse is destroyed
when the amplitude of the harmonic wave packet is of the

60 % 200 o_rder of the sohto_n amplitude. The bregkup of an initial
high-energy pulse into steady-state puld€ig. 5) also illus-
FIG. 3. Interactions between steady-state pulses on a bacitates the stability and soliton-like behavior of the solitary
ground corresponding t@,=0.15 with different polarities. The Waves under consideration.
faster pulse is such that;=1.2 and the slower one is such that
a=2. C. Breather-like pulses on a zero background

Equation(10) can be represented in the form of the modi-

To investigate the stability of the solitary wav8) over  fied Korteweg—de VrieémKdV) equation with the additional
a background under strong perturbations, collisions of thesgrm
steady-state pulses were simulated. It was found that pulses 5
with sufficiently different amplitudes interact almost like @Jr@_e 299 5 =R[q], (55)
solitons. This result does not depend on the relative polarity gt ox M ox
of the colliding pulses, as seen from Fig. 3. However, a weak
radiation is emitted after the collision, which is therefore not™/
completely elastic. This emission of radiation decreases g o
when the pulse amplitudes are different, but we did not ob- Rlq]=- —< ) 6uq ( )
serve any threshold above which it disappears.

As in the case of a zero background, the perturbation of & the difference between the RMD and mKdV equations.
steady-state pulse by a weak harmonic wave does not destrdhus, a good agreement between the solutions of these two
it; at the same time the harmonic wave packet transformsnodels can be expected df,~-q;. In that case, the first
into a dispersive wave. An example is presented in Fig. 4equation of the syster¥) givese=q and(10) leads to
which shows the evolution of a bright steady-state pulse ini-
tially perturbed by a harmonic wave packet, i.e., a_e % _ Iuez‘?_e _ ﬁe =Re]

at - ox a3 '

where

The possible occurrence of breather-like pulses in the
RMD model was an objective of our numerical investigation.
Since the evolution equations of the RMD and mKdV mod-
els resemble each other and the numerical simulation of the
steady-state pulses of the RMD model shows significant sta-
bility both during collisions and perturbations, it seems natu-
ral to consider a breather solution of the mKdV equation as
an initial condition for the RMD equations, given by

W “‘ il
A\_‘\:I_"/WW ,
I | MHJ

i
\/‘

W

\”‘\“\)’YW—/
B @ 200 e(xt=0)= - 4P a, cos b, coshd, — 5 smh 0, sin 02,
ap COSH 0]_ + (,8/a2)2 S|n2 02
FIG. 4. Evolution of a pulse witlx=2 in a previously polarized (56)
medium characterized byy=0.15. The pulse is initially perturbed
by a harmonic wave packet. with
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FIG. 7. Collision between a steady-state pulse of the RMD
model and a high-frequency pulse corresponding to a mKdV
breathera,=3. The steady-state pulse is characterizedb. The
paramete=0.1.

these high-frequency pulses also demonstrate the robustness
of such quasibreathers. The spectrum of the pulse located
near the frequency of the carrier wave is unchanged as the
pulse propagates. By using the multiple scale expansion
method [38], we found that the envelope of the high-
frequency modulated electromagnetic pulse evolves accord-
FIG. 6. A breather solution of the mKdV model in the RMD ing to the nonlinear Schrodinger equation. This explains the
model. (a8 corresponds taw,=0.5, while (b) corresponds tax, long life of the high-frequency breather-like pulse of the
=1.5. RMD model. We can then conclude that high-frequency
breather-like pulses in the RMD model are very close to the
6, = 28(x— x10) + 88(B2 — 3a§_ 0.25t, genuine breathers of a completely integrable system.

VII. CONCLUSION

- 2 2
02= 21 (X = Xg0) + Bay(az = 367+ 0.251. We have analyzed a model for the propagation of ex-
Therefore, we use the breather solution of the mKdvtremely short unipolar pulses of an electromagnetic field in a
equation(56) as an initial condition for the RMD model and medium represented by anharmonic oscillators with a cubic
will consider the stability of these pulses depending on theinonlinearity. The model takes into account the dispersion
frequency. In the following simulations3=0.5 anda, is  properties(in the linear limiy and the nonlinear response of
varied. the medium. This is the simplest generalization of the well-
As seen from Fig. @), a low-frequency pulse is broad- known Lorenz model used to describe linear optical proper-
ened due to dispersion and decays into quasiperiodic wavetgs in condensed matter. The cubic nonlinearity is the sim-
Localized breather-like pulses do not form in this case. Inplest anharmonic correction to the Lorenz model and it
creasing the initial pulse frequency leads to pulse stabilizaresults in the Duffing oscillator.
tion, as shown in Fig. ®). However, we do not find a sharp Before commenting further on our results, let us find the
transition from the dispersion broadening regime to theregion of applicability of the model that we considered. For
steady-state propagation. The distance for which distortionthat, one needs to estimate the amplitude of the steady-state
become significant increases monotonically with the fre-Solitary wave. In the general case, the representation of the
quency of the modulatiom,. The collisions of such high- potentialU(X) near the equilibrium position as a power se-
frequency pulses with a steady-state pulse of the RMDies in the displacement of an electron from its equilibrium
model (Fig. 7) also demonstrate the stability of these position gives the following approximations for the anhar-
breather-like pulses even though they are not exact solutiomsonicity coefficients:
of the model under consideration. In Fig. 8 we show the 1 4U 1 U
evolution of a high-frequency pulse obtained by modulation e —( ) ~ —(_0> (57)
of a steady-state pulse of the RMD model by a harmonic (n=-D!'m\dX"/5 (n-1)!m\ rg
wave. Here the distortions of an initial pulse are most pro-,
. : ence,
nounced forap,=1, i.e., near the eigenfrequency of the os-
cillators (3). Increasing the initial pulse frequency leads to »_ U _ U
the stabilization of the modulated pulse envelope. W= 2 | sl = emrt’ (58)
As it appears, both a high-frequency mKdV breather and 0 0
a high-frequency pulse obtained by the modulation of awherery corresponds to the equilibrium position abg is
steady-state pulse of the RMD model by a harmonic wavéhe ionization potential. For comparison, if we consider a
propagate steadily. The collisions of a steady-state pulse withlorse potential, then we obtaim=2Uy/mr3 and «g
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oor / FIG. 8. Left panel: evolution of the initial
100 pulse  e(t=0,x)=a\(a-1)/ usechy(a—1)(x

30 —Xp)]cog5(x—xg)] with @=2. Right panel: Fou-
%0 005 - \ rier spectrum of the pulse for the initial condition.
40 t \ It does not change with time. The parameter

=0.3.

20
6 000 —
0 20 40X60 80 100 I

=7U,/3mrg [19]. By using the normalizing parameters from and a variational method we show that these solitons are
(5)—Ag=mwirole, Xo=ro, and u=|ks|r3/ wi—we can esti- stable. This steady-state ESP is an electromagnetic spike
mate the peak of the amplitudds,=maxE(x,t) and X,,  propagating on a nonzero electric background. These can be

=maxX(x,t) for a steady-state pulse, as both bright and dark ESPs. Contrary to the ESP on a zero
_ 172 _ 12 background, here pulses of different polarities have different
En=ala-1)" Ay Xu=(a-1)7,, (59 amplitudes. The stability of these solutions can also be

where Ay=Uy/er, is the strength of the atomic field. The proved by the variational method. We investigated numeri-
peak amplitude of the steady-state pulse must not exaéged cally the propagation of both kinds of ESPs and demon-
According to[17] for xenon, Ay=~2x 10° V/cm. Further- strated the stability of steady-state solutions of RMD equa-
more, the anharmonic-oscillator model assumes that th#ons both on a zero background and a nonzero one. In both
magnitude ofy is less than 1, and this leads to the inequalitycases we found that inelastic effects are not essential. Of
a-1<1. course, there are some perturbatigns., high-frequency
When the strength of the electric field is extremely high,modulation with large amplitude, or low-frequency modula-
we can neglect the effect of the atomic potential and considelion just as Fig. &) demonstratesthat can destroy the soli-
the electron as free in this field. This allows to estimate théons. Finally, we do not observe the formation of a bound

increase in kinetic energy due to the field as state of Steady-state pulses. This does not seem possible.
) By considering the evolution of modulated initial pulses,

W, ~ (eﬁfi, (60) we found that there are long-lived high-frequency breather-

2m like solutions of the RMD equations. The envelope of these

fpulses can be described approximately by the nonlinear

wheret, is the pulse duration. lonization does not happen iS hrodi on. This slowl . | ;
Wiin<U,. Let us use the expression for the mass from the chrodinger equation. This slowly varying envelope approxi-

kin = ~0-,— 2 A . “mation is valid when the frequency of modulation is much
formula wy=2Uy/ mry. This leads to the no-ionization condi-

tion greater than the eigenfrequency of the Duffing oscillators. In
that regime the breather-like pulses are robust.

eEnwot, < 2Ug/r. (61) More generally, the reduced Maxwell-Duffing system of

equations does not seem to be integrable contrary to its rela-

the steadv-stat | nsidered. However. in order t tive, the reduced Maxwell-Bloch system. It does, however,
€ steady-stale pulse considered. HOWEVET, In Order 10 oly.oq01ye some of the regular features of the RMB system, as
tain clear illustrations of these effects in the numerical re-

sults, the parametez has been taken both from the interval evidenced by the limit of elastic collisions between pulses
1.01<a<1.1 and from the interval 2 «<5. The unidirec- and the existence of robust high-frequency breathers.
tional wave approximation is valid i,/ wg<1. This limits

the density of atoms. Typical concentrations of gas or impu- ACKNOWLEDGMENTS

rities in glass satisfy this condition so that we can reduce the

wave equation to a first-order evolution equation. ThereforeMathématiques INSA de Rouen for hospitality and support
the solutions that we have found could be observed by sendfhe visit of Ele,na V. Kazantseva to Rouen was made pos.-
inlg a short- and large-amplitude laser pulse in these mater'gible due to support.of INTAS grant 96-339.
als.

In this article, we have considered the reduced Maxwell-
Duffing model in detail. The Lagrangian density of the RMD APPENDIX: HIGH-FREQUENCY LIMIT
model was considered and three integrals of motion were OF RMD EQUATIONS
found. Two families of exact analytical solutions with posi- Let us consider Eq€10)
tive and negative polarities, have been found as moving soli-
tary pulses. The first kind of steady-state ESP is an electro- 9 9
magnetic spike propagating in a nonlinear medium. This was P
discussed earlier ih16,17,2]. Here we also obtained this
solution by an alternative method as a soliton of the bilinealFollowing a multiscale expansion, we write the variafylas
form of the RMD equations. Using the integrals of motion the series

This inequality is equivalent to the inequality—1<1 for

A.LM. and E.VK. are grateful to the Laboratoire de

2&q+ﬁ

6 — =
HA" 0 T o

0. (62)
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q=e(o+ ety + €Qp + €03+ ), (63) vg = doldk= (1 +K3)/(1 -k,

where the derivatives are represented as From the dispersion relation we get

i—i_}_ i+62i+ 2 2

(7‘:_(?‘:0 Eﬁtl ity ’ 1+ 2ko=(1+k9/(1-Kk9),

d J J J thus,

&_X:KO-FG&-'_EZK*””' (64)

Ja oa oa oa
- . ' ° . , (k2—1)——(1+2<w)—:(k2—1)<—+vg—>

Substituting (63) into (62) and collecting the terms with aty Xy 1 Xq

equal-order results in the following equations:
If we choosea=a(t;—X;/vg,t5,%,, ...), then the terms on the

3
(i + a + &—>q0: 0 (65) right side of Eq.(69) are equal to zero. Lei; be zero. The
MXg g atoﬂx(z) ’ substitution of(68) into (67) taking g;=0 into account then
results in
<i+i+i)q+(i+i)q p
Mo o dtoxg) T \axg  dty) <i+i+ 2)q2
X o HMedXy
&do &do i . . « .
0, (66) = 6i uwa® exp(3i 6} — 6i wwa™® exp(- 3i 6}

2 0
IModXodXy  dt19Xg P

- a d + 2k
¥ e"’((kz— D22~ (14 ko) 4 208
atz £7X2 Ug 676

* *

(i+i+i) +<i+i) +(i+i>

o o Itedxe e O A PR A _ o o

+ 6i,uw|a|2a> +e 9<(k2 - 1); - (1 + &kw)—
2

3
+5'3Q()2+ 5'3%2_'_ 5Q12+2 &do Xy
HModXy  HadXg A%y My XXy w + 2kv, fa’ N
#q #q aq iTr g " Glmolale ).
w220 o T 6,2 T 0=, 67) vg %%
HodXgdXy  IgdXodXy Ao

_ , L Here we use the new variabfet;—x;/v4. As the complex
and so on. The solution of the first equation is envelopea does not depend dg andx, the functiong, will

Oo = a(Xy,ty, %o, b, ... )explikxg —iwto} + c.c., (68)  be asuperposition of sindgand cos 3 only if the expression
in the brackets on the right-hand side of this equation is zero.

where the frequency and wave number are connected by theys, for the complex envelope (68) we get the equation
dispersion relation

_ - Ja Ja + kv, Pa
w=kI1-K)™ (= 1) 2 = (1+ Ke) = +i 257972 4 6ipwla2a=0.
.. . . . . . F7t2 (9X2 v (95
This is the dispersion relation for the linearized RMD equa- 9
tions. (70)
The substitution of68) into (53) yields the equation ] ) )
By assuming tha& does not depend ax, this equation can
(i L9, & )q be transformed into the standard form
Mg o dteoxd)

2
(1K) 02T o afaz0.  (71)
2 vg 0
To conclude we have shown that the envelope of a high-
, Ja" EPY frequency modulated electromagnetic pulse evolves accord-
+ e_'g((kz— 1)(%— -(1+ Z<w)g)- (69  ing to the nonlinear Schrodinger equation. This can explain
1 1 the long lifetime of the high-frequency breather-like pulse of

Here, 6=kxy— wty. The group velocity is the RMD model.

. J J
=e"9<(k2 21+ 2<w)—a>
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