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The propagation of extremely short pulses of an electromagnetic fieldselectromagnetic spikesd is considered
in the framework of a model wherein the material medium is represented by anharmonic oscillators with cubic
nonlinearitiessDuffing modeld and waves can propagate only in the right direction. The system of reduced
Maxwell-Duffing equations admits two families of exact analytical solutions in the form of solitary waves.
These are bright spikes propagating on a zero background, and bright and dark spikes propagating on a nonzero
background. We find that these steady-state pulses are stable in terms of boundedness of the Hamiltonian.
Direct simulations demonstrate that these pulses are very robust against perturbations. We find that a high-
frequency modulated electromagnetic pulse evolves into a breather-like one. Conversely, a low frequency pulse
transforms into a quasiharmonic wave.
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I. INTRODUCTION

Extremely short pulsessESPsd of the electromagnetic
field, which contain a few optical cycles, down to even half
a cycle have recently attracted a great deal of attention.
Much work has already been done on the theory of interac-
tion and propagation of ESPs assuming a resonant medium
f1–15g or a nonresonant mediumf16–24g. Surveys can be
found in f25–28g.

As is customary, the description of the ESP evolution uses
the total Maxwell equations without assuming a separation
into a carrier wave and an envelope. Generally, the Maxwell
equations admit the propagation of electromagnetic waves in
both directions. If, however, the nonlinear contribution to the
polarization of the medium is small, theunidirectional wave
propagationmay be assumedf2,4–6g ssee alsof7,10g for the
resonant case andf18,19g for the nonresonant oned. This ap-
proximation reduces the wave equation to a first-order one
without any assumption about the shape of the waves. The
unidirectional wave propagation approximation is frequently
used for the simulation of ESP propagation in a homoge-
neous low density mediumf22,27g.

The typical models of the nonlinear medium are the en-
sembles ofN-level atoms or anharmonic oscillators. If the
spectral width of the ESP is much smaller than the resonance
frequency, we can omit all nonresonant levels and consider
only two levels. Thus, we obtainthe approximation of the
two-level atoms, which is very popular in resonant and co-
herent optics. The wave equation in this case is comple-
mented by the Bloch equations for the two-level atom vari-
ables. When the unidirectional wave propagation
approximation is taken into account, the total Maxwell-

Bloch equations transforms into thereduced Maxwell-Bloch
sRMBd equationsf2–4g.

The inverse scattering transform method gives an exact
solution of the RMB equations which describes the multiple
collision of N solitons with different velocitiesf3,4g. The
Hamiltonian formulation of the RMB equations was consid-
ered inf29g. The r-matrix was found and it was shown that
the Poisson brackets are not ultralocal, contrary to the
McCall-Hahn equation describing the propagation of coher-
ent ultrashort pulses in the slowly varying envelope and
phase approximation. However, the RMB equations repre-
sent a more general completely integrable Hamiltonian sys-
tem.

Exact multisoliton solutions of the RMB equations that
incorporate the effect of a permanent dipolef9g were found
in f10,11g. In particular, these solutions are good examples of
unipolar, nonoscillating electromagnetic solitons, commonly
referred to as “electromagnetic bubbles.”

The validity of the two-level approximation in the inter-
action of atoms with few-cycle light pulses was studied in
f15g by considering a simple three-level atom model. It was
pointed out that even if the transition frequency between the
ground state and the third level is far away from the spec-
trum of the pulse, this additional transition can make the
two-level approximation inaccurate. When decreasing the
pulse width or increasing the pulse area, the two-level ap-
proximation will give rise to non-negligible errors compared
with the precise results.

The recent investigation of the propagation of an attosec-
ond pulse in a dense two-level mediumf14g shows that the
standard area theorem breaks down even for small-area
pulses. Ideal self-induced transparency cannot occur even for
a 2p pulse while pulses whose area is not an integer multiple
of 2p cannot evolve to 2p pulses, as predicted by the stan-
dard area theorem. Significantly higher spectral components
can occur on all these small-area propagating pulses due to a
strong carrier reshaping.
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Solitary wave propagation in the total Maxwell-Bloch
equations was discussed inf13g assuming optical subcycle
pulses interacting with a dense medium of two-level atoms.
A large blueshift in the transmitted pulse and a large redshift
in the reflected pulse are predicted using intrapulse four-
wave mixing.

It should be pointed out that when the atomic density is
such that there are many atoms within a cubic resonance
wavelength, the near-dipole-dipole interactions—which lead
to local-field corrections—cannot be neglected. Hence, in a
dense two-level medium, the Maxwell-Bloch equations
should be modified as was done inf30–32g ssee alsof33gd.
Thus the generalization of the RMB equations taking into
account the many-levels atom and/or the dipole-dipole inter-
actions usually destroys complete integrability. This is the
price of the desired generalization. Furthermore, in a strong
electromagnetic field the picture of energy levels, related
with an initial unperturbated Hamiltonian may be not correct.
There are different attempts to describe the nonlinear propa-
gation and interaction of electromagnetic pulses in transpar-
ent medium beyond the resonant systems.

One of these approaches is to describe the nonlinear dy-
namics of the medium driven by the electromagnetic field
using anharmonic oscillators. In particular, the propagation
of a linearly polarized ESP was consideredf21,23g using
Duffing oscillators so that the nonlinear response of the me-
dium is cubic. This is the simplest generalization of the Lor-
entz model which has been very useful to describe the propa-
gation of an electromagnetic wave in a linear medium.
Recently, the Lorentz oscillator model was employedf22g to
account for a linear retarded response of the medium and a
nonlinear oscillator was considered to describe an instanta-
neous Kerr nonlinearity. The Duffing model takes into ac-
count the dispersion properties of both the linear and nonlin-
ear responses of the medium so that it may represent better
the nonlinear response on an electromagnetic pulse contain-
ing a few cycles.

In some cases the anharmonic oscillator model can be
derived from the two-level atoms model. For example, in
f27g the RMB equations were transformed into a modified
Korteweg–de Vries equation. One can develop the procedure
of derivation of the series of complete integrable equations
from the RMB. On another hand, we can start from the
Heisenberg equations for the operator of the displacement of
an electron from its equilibrium position. After calculation of
the expected values of this variable, omitting the quantum
correlations effects, we can obtain the classical equation of
motion for thesstronglyd anharmonic oscillator. In this way
we do not use the two-levelsor N-leveld atom representation.
The Duffing oscillator is the simplest variant of this model,
in which only the weak nonlinear response of a medium is
accounted for. This model cannot describe a number of ef-
fects seen in a strong field of ESPs; for example, the ioniza-
tion. More complete representations should be developed us-
ing a more realistic potential. The wave equation assuming
the unidirectional wave propagation approximation and the
Duffing oscillator equation for the medium form a system of
equations called thereduced Maxwell-DuffingsRMDd equa-
tions by analogy with the reduced Maxwell-Bloch equations.

The objective of the present work is to study the unidirec-
tional propagation and interactions of linearly polarized

ESPs in a nonlinear dispersive medium modeled by anhar-
monic oscillators with cubic nonlinearities. The paper is
structured as follows. The model is derived in Sec. II. Dy-
namical invariants or integrals of motion are given in Sec.
III. Two families of moving ESP solutions are found analyti-
cally and confirmed using Hirota bilinear forms in Sec. IV. In
Sec. V the stability of the steady-state solutions of the RMD
equations is considered using the variational method. We
prove stability of the steady-state ESPs by using the bound-
edness of the Hamiltonian for a fixed total moment. The
propagation of the pulses and their collisionssfor both signs
of the polarity of the colliding pulsesd are investigated nu-
merically in Sec. VI. We conclude in Sec. VII.

II. THE REDUCED MAXWELL-DUFFING MODEL

The one-dimensional propagation of electromagnetic
waves in a nonlinear medium is governed by the wave equa-
tion

]2E

]z2 −
1

c2

]2E

]t2
=

4p

c2

]2P

]t2
, s1d

whereP is the polarization of the medium. According to the
unidirectional wave approximation Eq.s1d can be replaced
by the first-order equationf6,27g

]E

]z
+

1

c

]E

]t
= −

2p

c

]P

]t
. s2d

We adopt a simple anharmonic-oscillator model for the
medium, which is commonly used to approximate the me-
dium response for an electromagnetic influencef34g ssee also
f35gd. Here we will consider the oscillator with cubic anhar-
monicity. In addition, we will assume the case of a homoge-
neous broadening medium, where all atoms have the same
parameters. IfX represents the displacement of an electron
from its equilibrium position, the equation of motionswhich
neglects frictiond can be written as

]2X

]t2
+ v0

2X + k3X
3 =

e

meff
E, s3d

wherev0 is an eigenfrequency of the oscillator,k3 is anhar-
monicity coefficients,meff=3m/ s«+2d is the effective mass
of the electron. Hereafter, we will usem as a symbol for this
effective mass and the symbole denotes the electron charge.
Finally, the dynamical variableX is related to the medium
polarization,P=nAeX, wherenA is the density of oscillators
satomsd.

It is suitable to use as independent variablest=z/ l, x
=v0st−z/cd, and to normalize the dependent variables
sfieldsd by

e= E/A0, q = X/X0, s4d

where

A0 = mv0
2X0/e = mv0

2e−1s2m/uk3ud1/2, X0 = s2mv0
2/uk3ud1/2,

s5d
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l−1 = 2pnAe
2/smcv0d = vp

2/2cv0, s6d

andvp=s4pnAe
2/md1/2 is the plasma frequency. In terms of

the rescaled variables, Eqs.s2d and s3d take the form

]e

]t
= −

]q

]x
,

]2q

]x2 + q + 2mq3 = e, s7d

with the single remaining parameter 2m=k3X0
2/v0

2. The two
Eqs.s7d are the final form of the model. In the following we
will refer to them as reduced Maxwell-Duffing equations.

III. LAGRANGIAN AND INTEGRALS OF MOTION

The system of RMD equations can be derived as the
Euler-Lagrange equations from the action functional

S=E Lfq,fgdxdt,

where the Lagrangian density is

Lfq,fg =
1

2

]f

]x

]f

]t
+

1

2
S ]q

]x
D2

−
1

2
q2 −

m

2
q4 + q

]f

]x
. s8d

Application of the variational procedure to the actionS
yields equations

]2f

]t]x
+

]q

]x
= 0,

]2q

]x2 + q + 2mq3 =
]f

]x
. s9d

Identifying f as a potential for the fieldsq ande, so thatq
;−]f /]t ande=]f /]x, makes these equations identical to
the system of Eqs.s7d, which can be further transformed into
the single equation

]q

]t
+

]q

]x
+ 6mq2]q

]t
+

]3q

]t]x2 = 0. s10d

From the Lagrangian densitys8d we can obtain the den-
sity of moments of the fieldsf andq:

pfst,xd =
]L
]f,t

=
1

2
f,xst,xd =

1

2
est,xd, pqst,xd =

]L
]q,t

= 0.

s11d

The density of the canonical Hamiltonian for this dynami-
cal system can be obtained fromL by means of the standard
Legendre transformation

H =
]L
]f,t

f,t +
]L
]q,t

q,t − L = −
1

2
S ]q

]x
D2

+
1

2
q2 +

m

2
q4 − eq.

Thus, the Hamiltonian is

H =E
−`

+` F−
1

2
S ]q

]x
D2

+
1

2
q2 +

m

2
q4 − eqGdx. s12d

The variablee can be eliminated from it, using RMD
equations, so that

H = −
]

]x
Sq

]q

]x
D +

1

2
S ]q

]x
D2

−
1

2
q2 −

3m

2
q4.

Omitting the full derivative, the Hamiltonian corresponding
to the densitys13d takes the form

H =E
−`

+` F1

2
S ]q

]x
D2

−
1

2
q2 −

3m

2
q4Gdx. s13d

The Hamiltonian is the first integral of motion of the
RMD equations. An additional integral of motion is the total
moment associated with the fieldf that one may check on
the basis of the RMD equationss7d:

I1 =E
−`

+`

est,xddx=E
−`

+`

f,xst,xddx

= fst,x = `d − fst,x = − `d. s14d

The magnitude of this integral is defined by the boundary
conditions only, thus, it can be interpreted as a topological
charge in the Maxwell-Duffing model.

A third integral can be found by the following. Using the
canonical moment one can rewrite Eqs.s7d as

]pf

]t
= −

1

2

]q

]x
, pf =

1

2
S ]2q

]x2 + q + 2mq3D .

From the first equation of this system it follows that

pf

]pf

]t
= − pf

1

2

]q

]x
.

Taking into account the second equation, one can obtain the
expression

]pf
2

]t
= −

1

4

]

]x
FS ]q

]x
D2

+ q2 + mq4G .

Thus, one obtains the third integral of motion

I2 =E
−`

+`

pf
2st,xddx=

1

4
E

−`

+` Sq + 2mq3 +
]2q

]x2D2

dx.

s15d

Taking into account the relations11d, this integral may be
interpreted as a “pulse energy”

4I2 =E
−`

+`

e2st,xddx. s16d

It is important to understand the physical contents of these
integrals of motion. It should be pointed out that the La-
grangian of the RMD model is an example of a degenerate
Lagrangian system. The expressions ins11d indicate that this
Lagrangian leads to a constrained Hamiltonian system,
wherepfst ,xd=s1/2df,xst ,xd and pqst ,xd=0 is the primary
constraintf36g. The conservation of total moments14d cor-
responds to the invariance of the system under consideration
with respect to a shift of the fieldfst ,xd by a constant. It is
not a space translation symmetry, as it usually occurs, when
referring to the moment.

To consider the space-time translation symmetry of the
RMD model, it is suitable to denote new variables:y1= t,
y2=x and u1=f, u2=q. For any system, if the space-time
variables are not explicitly included in the Lagrangian, there
are the conservation laws of the form
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o
k=1,2

]

]yk
Ti

k = 0, s17d

where the energy-moment tensorTi
k is denoted as

Ti
k = o

a=1,2

]L
]ua,k

ua,i − Ldki.

Here,ua,i =]ua/]yi. In the case of the RMD model, we have
two integrals of motion resulting froms17d as

Q1 =E
−`

+`

T1
1dx, Q2 =E

−`

+`

T2
1dx. s18d

By using the Lagrangians8d one can find

T1
1 = −

1

2
S ]q

]x
D2

+
1

2
q2 +

m

2
q4 − q

]f

]x
, T2

1 = −
1

2
S ]f

]x
D2

.

The substitution of these expressions into integrals ofs18d
leads toQ1=H, Q2=−2I2. Thus, we obtain the interpretation
integralsI2 andH as the total moment and total energy, re-
spectively, in the RMD model. Unlike the total canonical
momentI1, the total moment −2I2 reflects the invariance of
the RMD model with respect to space translation.

IV. ANALYTICAL SOLUTIONS FOR
THE EXTREMELY SHORT PULSES

It seems plausible that the system of RMD equations is
not integrable. Nevertheless, some exact analytical solutions,
describing the propagation of ESPs without destruction, can
be found. In order to obtain these steady-state solutions, one
should assume thate andq depend on a single variable, as

h = x − t/a = v0st − z/cd, s19d

with some constanta. An expression for the velocityV of a
steadily moving pulse then follows from Eq.s4d, given by

V−1 = c−1f1 + s1/2adsvp/v0d2g. s20d

Hence, the parametera defines the velocity of the steady
state ESP and we should obtain a one-parametric family of
exact analytical solutions of the RMD equations. In general,
choosing the boundary conditions results in different solu-
tions of these equations. Here we restrict our attention to
solitary wave solutions.

A. Steady state pulse on a zero background

Let us consider the following initial and boundary condi-
tions:

est = 0,xd = e0sxd,

and

e0sxd = 0, qst,xd = ]qst,xd/]x = 0, atx → ± `. s21d

The first equation of the systems7d can be integrated to yield

est,xd = aqst,xd. s22d

Next, the second equation from the systems7d takes the form

d2q

dh2 + s1 − adq + 2mq3 = 0. s23d

If a.1 andm.0, this equation has a family of exact solu-
tions parametrized by the continuouspositive parametera
−1 and discrete one, as

qst,xd = ± Îsa − 1d/m sechfÎsa − 1dsx − t/a − x0dg,

s24d

est,xd = ± aÎsa − 1d/m sechfÎsa − 1dsx − t/a − x0dg.

s25d

Expressions25d corresponds to the one spike of the electro-
magnetic field, propagating without form distortion in a non-
resonant medium with cubic nonlinearity.

There is an alternative method to obtain the steady-state
solution of Eqs.s7d, wherein the assumptions19d is not in
use. The method follows from the observation that system
s7d can be represented in bilinear form by Hirota. If the sub-
stitutions

e= a/h, q = b/h s26d

are used, then Eqs.s7d can be rewritten as

Dtsa ·hd + Dxsb ·hd = 0, s27d

Dx
2sb ·hd = ah− bh, s28d

Dx
2sh ·hd = 2mb2, s29d

where Hirota’s D-operators Dxsa·bd=limx→x8s]x

−]x8dasxdbsx8d f37g, and so on, were used.
Let us make the usual assumption to solve equations

s27d–s29d f37,38g:

a = a expsud, b = b expsud, h = 1 +h1expsud + h2exps2ud,

whereu=kx−Vt. The substitution of these expressions into
s27d–s29d results in algebraic equations with respect to
expsud. Equating the coefficients of the different powers of
expsud to zero, one can obtain the system of equations defin-
ing a, b, h1, and h2. From s27d, we getaV−bk=0. From
s28d, two conditions follow:h1=0 andbk2=a−b. These ex-
pressions lead to the “dispersion relation”

V = k/s1 + k2d. s30d

Equation s29d yields three relations:h1k
2=0, 4h2k

2=mb2,
and h1h2k

2=0. As h1=0, we have only the second relation
defining h2; i.e., h2=msb /2kd2. Thus, we find a one-soliton
solution of the bilinear equationss27d–s29d

a = s1 + k2db expsud, b = b expsud,

h = 1 +msb/2kd2 exps2ud.

These relations yield the solution of Eqs.s7d, which is cor-
related with the steady-state one that was obtained earlier:

q =
b expsud

1 + msb/2kd2 exps2ud
, e=

s1 + k2db expsud
1 + msb/2kd2 exps2ud

.

s31d
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If we introduce the parameterx0 rather thanb according
to b=2m1/2 expskx0d, and definea=1+k2, expressionss31d
can be written in the form ofs24d and s25d.

It should be remarked that dispersion relation of this soli-
tonss30d differs from the dispersion relation for linear waves
in this model:V=k/ s1−k2d.

It would be interesting to find the two-soliton solution of
the bilinear equationss27d–s29d. However, the standard ap-
proachf37,38g is not successful. This may indicate that there
are neither two- nor more-soliton solutions of the system of
RMD equations.

B. Steady-state pulse on a nonzero background

If the medium is first polarized by a continuum electric
field, the oscillator coordinate is shifted from the equilibrium
positionsi.e., atoms have a constant electronic polarizability
induced by the external electric fieldd. Let us denote this new
position asq0. The initial and boundary conditions can be
written as

est = 0,xd = e0sxd,

and

e0 = q0 + 2mq0
3, qst,xd = q0, ]qst,xd/]x = 0, for x → ± `.

s32d

We introduce the variablesf =q−q0 and u=e−e0, which
approach zero at infinity. This results in the following equa-
tions:

]u

]t
= −

]f

]x
,

]2f

]x2 + f + 2ms3q0
2f + 3q0f2 + f3d = u. s33d

Looking for a steady state solution ofs33d, we obtain

d2f

dh2 + s1 − a1df + 6mq0f2 + 2mf3 = 0, s34d

where a1=a−6mq0
2. Integrating this equation once, taking

into account zero boundary conditions, one obtains

S df

dh
D2

= sa1 − 1df2 − 4mq0f3 − mf4. s35d

The substitution off =1/y transforms this into the following
equation:

S dy

dh
D2

= sa1 − 1dfsy − y0d2 − D2g,

where

y0 = 2mq0sa1 − 1d−1, D2 = msa1 − 1d−1 + y0
2. s36d

The substitutiony=y0±D coshw reduces this equation to the
trivial onedw /dh=sa1−1d−1/2. Thus, we have the solution of
Eq. s35d written as

fst,xd = hy0 ± D coshfÎsa1 − 1dsh − h0dgj−1. s37d

If q0→0 this expression reproduces the formulas24d. The
electric field of the electromagnetic wave is given by the
following expression:

est,xd = e0 + ahy0 ± D coshfÎsa1 − 1dsh − h0dgj−1 = e0 +
asa1 − 1d

2mq0 ± Îmsa1 − 1d + 4m2q0
2 coshfÎsa1 − 1dsh − h0dg

. s38d

The plus sign ins38d corresponds to a bright spike of the
electromagnetic field on a constant background; the minus
sign in s38d corresponds to a dark solitary wave: the narrow
hole propagating on background.

Now we can consider the special case when the parameter
a1 is equal unity. Equations35d then takes the form

S df

dh
D2

= − 4mq0f3 − mf4. s39d

Substitution of f =−1/y transforms it into sdy/dhd2

=ms4q0y−1d, the integral of which leads to the following
expression forf:

fst,xd =
− 4q0

1 + 4mq0
2sx − t/a − x0d2 . s40d

Here, x0 is the constant of integration which indicates the
location of the maximum of the steady-state dark pulse. One
may name this pulse ”algebraic soliton,” due to its decay rate

with time and coordinate. For this solution we have the fol-
lowing relations:

qst,xd = q0 −
4q0

1 + 4mq0
2sx − t/a − x0d2 s41d

and

est,xd = q0 + 2mq0
3 −

4q0s1 + 6mq0
2d

1 + 4mq0
2sx − t/a − x0d2 . s42d

Note that when the initial medium stateq0 is large, the
amplitude of the electric field is much larger than the me-
dium variable. Forq0@1 we have a dark solitary wave hav-
ing a bright spot in the center, while forq0!−1 we have a
solitary wave superimposed on a nonzero background.
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V. STABILITY OF A STEADY-STATE PULSE
ON A ZERO BACKGROUND

The problem of the stability of the steady-state solutions
of the RMD equations can be considered with variational
methodsf39g. For that we introduce the following functional:

Wfq,eg = H +
2

a
I2, s43d

where the Hamiltonian is taken in the forms12d. In the varia-
tion of Wfq,eg the fieldsq ande are considered to be inde-
pendent resulting, in

dW=E
−`

+` F ]2q

]x2 + q + 2mq3 − eGdqdx+E
−`

+`

fa−1e− qgdt dx.

Thus, the variational problemdW=0 leads to the Eqs.s22d
ands23d. In this section we will usex instead of the variable
h=x− t /a. Multiplying Eq. s23d by q and integrating it over
x, we obtain

− W1 − bW2 + 2mW4 = 0, s44d

whereb=a−1, and

W1 =E
−`

+` S ]q

]x
D2

dx, Wn =E
−`

+`

qndx, n ù 2 s45d

Multiplying Eq. s23d by x]xq and integrating it overx, we
obtain after some manipulations the other relation between
the integrals under consideration:

W1 − bW2 + mW4 = 0. s46d

Combinings44d and s46d, we obtain

W1 = bW2/3, mW4 = 2bW2/3, s47d

and

H = − s5a − 2dW2/6. s48d

One can check that the Hamiltonians13d takes the same
value ass48d. Thus, the Hamiltonian is negative fora.1.
Using formulas47d, one can findW=−bW2/3,0 as well.

To solve the problem of stability of steady-state solutions,
we can use Lyapunov’s theorem which, in the case of bound-
edness of the Hamiltoniansor any suitable functionald from
above or below, gives absolute stability to a solution realiz-
ing a maximum or a minimum. Now we prove that the
Hamiltonian is bounded from below fora.1.

Let us consider the scaling transformation containing
I2: qsxd→l1/2qslxd f39,40g, for which the Hamiltonians13d
becomes a function of the parameterl:

H̃sld =
1

2
sW1l2 − W2 − 3mW4ld. s49d

When l→1 we haveH̃sld→H. An extremum ofH̃sld is
attained at the point

l0 = 3mW4/2W1. s50d

As d2H̃sld /dl2=W1.0, at this point the functionH̃sld has a

minimum. Forl0Þ1 we haveumin H̃sldu. uHu and for l0

=1 umin H̃sldu= uHu. Hence,umin H̃slduù uHu. The substitu-
tion of s50d into s49d results in

min H̃sld = −
1

2
SW2 +

9m2W4
2

4W1
D .

To estimate the integralW4 we can use the inequalitys1.39d
from f39g:

W4 ø 2W1
1/2W2

3/2. s51d

Using the inequality

uHu ø umin H̃sldu ø
1

2
SuW2u + U9m2W4

2

4W1
UD ,

and s51d, we obtain

uHu ø
W2

2
s1 + 9m2W2

2d s52d

As the Hamiltonian is bounded from below, the functional
W is bounded as well. According to Lyapunov’s theorem, this
proves stability of the steady-state solutionss24d.

To consider the stability of the steady-state solutions with
nonzero boundary conditionss38d, we should start from Eqs.
s33d and find the functional that would be minimized by the
solutions of Eq.s34d. In this way we could obtain the non-
linearity that is smaller thanq4. This corresponds to the prob-
lem discussed inf40g. The principal role in the analysis is
due to the integralI2. The steady-state ESPs38d is also seen
to be stable. We will confirm this using a numerical simula-
tion.

VI. NUMERICAL SIMULATION OF THE PROPAGATION
AND COLLISIONS OF THE PULSES

The propagation and interaction of the steady-state pulses
in the dispersive medium with both quadratic and quadratic-
cubic nonlinearities were thoroughly studied inf18,19g.
There, direct simulations demonstrated the strong stability of
the pulses against various perturbations.

Here we have considered the cubic nonlinear medium and
found two types of steady-state pulses: an electromagnetic
spike propagating in a ground state medium and a pulse
propagating in a medium polarized by a constant electric
field. In this last case, the electromagnetic pulse propagates
steadily over the constant electric background. In the case of
zero background, we obtain a one-parameter family of stable
solutions. The perturbationssfor example, collisionsd can
transform one of them into another member of this family.
Frequently, a collision results in radiation of quasiharmonic
waves. In addition, we cannot rule out the existence of non-
steady-state solutions, apart from the ones we found, which
are not stable but are long-lived. Numerical simulations may
be useful to study this particular aspect.

For this purpose, we write the systems7d in the following
form:

]e

]t
= − p, s53d
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]q

]x
= p,

]p

]x
= e− q − 2mq3. s54d

Given initial conditionsqst=0,xd , pst=0,xd, and est=0,xd
and boundary conditionsqst ,xd=q0, sq0=0 or q0Þ0d
]qst ,xd /]x=0, for x→ ±`, the basic algorithm is the follow-
ing:

s1d integrates53d in t to obtainesdt,xd,
s2d integrates54d in x to obtainqsdt,x+dxd ,psdt,x+dxd,
s3d go to step 1.
One can use any technique of numerical integration of

ordinary differential equations to solve this system both inx
and t. We employed the fourth-order Runge-Kutta routine.
As initial conditions, we took the analytical solutions given
by Eqs.s25d and s38d at t=0.

A. Propagation of pulses on a zero background

In this subsection we consider the stability of the steady-
state solutions corresponding to spikes propagating in non-
polarized media, where the oscillators are initially in the
ground state. In this case the initial and boundary conditions
in the numerical simulations have been chosen ass21d with
e0sxd defined by the expressions25d. Below, the parameterm
is set to 0.3 unless otherwise indicated. As the velocities of
the pulses are determined by their widths, the angle of the
trajectories in thesx,td plane, and therefore the interaction
time of the pulses can be modified by choosing their initial
widths.

For equal polarities, if the relative velocities of the collid-
ing pulses are considerably different, the pulses do not
change their form and velocity after interaction. Figure 1
shows the collision of two bright spike solutions ofs25d with
a=2 anda=4. Strictly speaking, the solitary wave solutions
of the model under consideration are not solitons since the
system of Eqs.s7d has no Painlevé propertiesf41g, but nu-
merical simulations prove that these steady-state pulses col-
lide almost elastically.

When decreasing the relative velocities of the colliding
pulses, which are chosen with equal polarities, a strong mu-
tual energy exchange takes place and the two colliding
pulses never completely overlap. Figure 2 is a typical picture
illustrating this result, which is quite similar to the classical
description of collisions between solitons in the modified

Korteweg–de Vries equationf38g. Numerical simulations
show that the collisions between pulses are almost elastic
independently of the polarities as long as the amplitudes are
different. This is in contrast to the collision between pulses in
the quadratic-cubic nonlinear mediumf19g. This difference
can be due to the symmetry of the Hamiltonians13d of the
cubic Maxwell-Duffing model, which is different from the
case off18,19g.

Increasing the initial pulse energy beyond the energy of
the steady-state pulse results in its decay into one or more
steady-state pulsessdepending on the initial pulse energyd
and radiation. The formation of a steady-state pulse from an
arbitrary initial ssmoothd pulse also illustrates the stability of
the solitary waves under consideration.

To summarize this study of the collisions between two
spikes, one can say that the result of the collision of the two
spikes depends only weakly on the difference of the pulse
widths. The two spikes can penetrate through each other
without appreciable changes, if their widths are different
enough. However, the collision leads to more interesting re-
sults when the pulses velocities are close. In this case the
energy due to the decay of the smaller pulsesirrespective of
its polarityd is transferred to the larger pulse and a small
solitary wave appears during the interaction process.

The stability of the pulses under weak perturbationssi.e.,
a low-amplitude harmonic wave packetd is also very interest-
ing. We find that the steady-state pulses under consideration
appear to be stable in this sense. To conclude, our investiga-
tion demonstrates that the steady-state solutions of the RMD
equations on a zero background behave similarly to solitons
of completely integrable models.

B. Pulse propagation on a nonzero background

In the absence of an electromagnetic wave, a medium
polarized by a constant electric field is stable. For this model
it can be shown that small perturbations of the background
are not amplified so that there is no modulational instability.

Now let us consider the stability of the steady-state elec-
tromagnetic spikes we found propagating on such a back-
ground. The initial and boundary conditions have been cho-
sen ass32d, where the initial solitary pulse has the following
form:

esolst = 0,xd = e0 + ahy0 ± D coshfÎsa1 − 1dsh − h0dgj−1

with D defined bys36d.

FIG. 1. Collision between two bright steady-state pulses on a
zero background. Their relative velocities differ sufficiently and the
interaction does not change their shapes. The parameterm=1/3.

FIG. 2. Energy exchange between two bright pulses traveling at
very close velocitiessa=2 anda=2.4d.
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To investigate the stability of the solitary wavess38d over
a background under strong perturbations, collisions of these
steady-state pulses were simulated. It was found that pulses
with sufficiently different amplitudes interact almost like
solitons. This result does not depend on the relative polarity
of the colliding pulses, as seen from Fig. 3. However, a weak
radiation is emitted after the collision, which is therefore not
completely elastic. This emission of radiation decreases
when the pulse amplitudes are different, but we did not ob-
serve any threshold above which it disappears.

As in the case of a zero background, the perturbation of a
steady-state pulse by a weak harmonic wave does not destroy
it; at the same time the harmonic wave packet transforms
into a dispersive wave. An example is presented in Fig. 4,
which shows the evolution of a bright steady-state pulse ini-
tially perturbed by a harmonic wave packet, i.e.,

est = 0,xd = esolst = 0,x − 15d

+ 0.5fqsx − 30d − qsx − 40dgcos 5x

whereqsxd is the Heaviside step-like function:qsxd=0 if x
,0, andqsxd=1 if x.0. This steady-state pulse is destroyed
when the amplitude of the harmonic wave packet is of the
order of the soliton amplitude. The breakup of an initial
high-energy pulse into steady-state pulsessFig. 5d also illus-
trates the stability and soliton-like behavior of the solitary
waves under consideration.

C. Breather-like pulses on a zero background

Equations10d can be represented in the form of the modi-
fied Korteweg–de VriessmKdVd equation with the additional
term

]q

]t
+

]q

]x
− 6mq2]q

]x
−

]3q

]x3 = Rfqg, s55d

where

Rfqg = −
]2

]x2S ]q

]t
+

]q

]x
D − 6mq2S ]q

]t
+

]q

]x
D ,

is the difference between the RMD and mKdV equations.
Thus, a good agreement between the solutions of these two
models can be expected ifq,x<−q,t. In that case, the first
equation of the systems7d givese<q and s10d leads to

]e

]t
+

]e

]x
− 6me2]e

]t
−

]3e

]x3 = Rfeg.

The possible occurrence of breather-like pulses in the
RMD model was an objective of our numerical investigation.
Since the evolution equations of the RMD and mKdV mod-
els resemble each other and the numerical simulation of the
steady-state pulses of the RMD model shows significant sta-
bility both during collisions and perturbations, it seems natu-
ral to consider a breather solution of the mKdV equation as
an initial condition for the RMD equations, given by

esx,t = 0d = −
4b

a2

a2 cosu2 coshu1 − b sinhu1 sinu2

cosh2 u1 + sb/a2d2 sin2 u2
,

s56d

with

FIG. 3. Interactions between steady-state pulses on a back-
ground corresponding toq0=0.15 with different polarities. The
faster pulse is such thata1=1.2 and the slower one is such that
a1=2.

FIG. 4. Evolution of a pulse witha=2 in a previously polarized
medium characterized byq0=0.15. The pulse is initially perturbed
by a harmonic wave packet.

FIG. 5. Formation of steady-state pulses from a high-energy
initial pulse in a polarized medium.
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u1 = 2bsx − x10d + 8bsb2 − 3a2
2 − 0.25dt,

u2 = 2a1sx − x20d + 8a2sa2
2 − 3b2 + 0.25dt.

Therefore, we use the breather solution of the mKdV
equations56d as an initial condition for the RMD model and
will consider the stability of these pulses depending on their
frequency. In the following simulations,b=0.5 anda2 is
varied.

As seen from Fig. 6sad, a low-frequency pulse is broad-
ened due to dispersion and decays into quasiperiodic waves.
Localized breather-like pulses do not form in this case. In-
creasing the initial pulse frequency leads to pulse stabiliza-
tion, as shown in Fig. 6sbd. However, we do not find a sharp
transition from the dispersion broadening regime to the
steady-state propagation. The distance for which distortions
become significant increases monotonically with the fre-
quency of the modulationa2. The collisions of such high-
frequency pulses with a steady-state pulse of the RMD
model sFig. 7d also demonstrate the stability of these
breather-like pulses even though they are not exact solutions
of the model under consideration. In Fig. 8 we show the
evolution of a high-frequency pulse obtained by modulation
of a steady-state pulse of the RMD model by a harmonic
wave. Here the distortions of an initial pulse are most pro-
nounced fora2<1, i.e., near the eigenfrequency of the os-
cillators s3d. Increasing the initial pulse frequency leads to
the stabilization of the modulated pulse envelope.

As it appears, both a high-frequency mKdV breather and
a high-frequency pulse obtained by the modulation of a
steady-state pulse of the RMD model by a harmonic wave
propagate steadily. The collisions of a steady-state pulse with

these high-frequency pulses also demonstrate the robustness
of such quasibreathers. The spectrum of the pulse located
near the frequency of the carrier wave is unchanged as the
pulse propagates. By using the multiple scale expansion
method f38g, we found that the envelope of the high-
frequency modulated electromagnetic pulse evolves accord-
ing to the nonlinear Schrödinger equation. This explains the
long life of the high-frequency breather-like pulse of the
RMD model. We can then conclude that high-frequency
breather-like pulses in the RMD model are very close to the
genuine breathers of a completely integrable system.

VII. CONCLUSION

We have analyzed a model for the propagation of ex-
tremely short unipolar pulses of an electromagnetic field in a
medium represented by anharmonic oscillators with a cubic
nonlinearity. The model takes into account the dispersion
propertiessin the linear limitd and the nonlinear response of
the medium. This is the simplest generalization of the well-
known Lorenz model used to describe linear optical proper-
ties in condensed matter. The cubic nonlinearity is the sim-
plest anharmonic correction to the Lorenz model and it
results in the Duffing oscillator.

Before commenting further on our results, let us find the
region of applicability of the model that we considered. For
that, one needs to estimate the amplitude of the steady-state
solitary wave. In the general case, the representation of the
potentialUsXd near the equilibrium position as a power se-
ries in the displacementX of an electron from its equilibrium
position gives the following approximations for the anhar-
monicity coefficients:

uknu =
1

sn − 1d!m
SdnU

dXnD
0

<
1

sn − 1d!mSU0

r0
n D . s57d

Hence,

v0
2 =

U0

mr0
2, uk3u =

U0

6mr0
4 , s58d

where r0 corresponds to the equilibrium position andU0 is
the ionization potential. For comparison, if we consider a
Morse potential, then we obtainv0

2=2U0/mr0
2 and k3

FIG. 6. A breather solution of the mKdV model in the RMD
model. sad corresponds toa2=0.5, while sbd corresponds toa2

=1.5.

FIG. 7. Collision between a steady-state pulse of the RMD
model and a high-frequency pulse corresponding to a mKdV
breather,a2=3. The steady-state pulse is characterized bya=3. The
parameterm=0.1.
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=7U0/3mr0
4 f19g. By using the normalizing parameters from

s5d—A0=mv0
2r0/e , X0=r0, and 2m= uk3ur0

3/v0
2—we can esti-

mate the peak of the amplitudesEm=maxEsx,td and Xm

=maxXsx,td for a steady-state pulse, as

Em = asa − 1d1/2Aat, Xm = sa − 1d1/2r0, s59d

where Aat=U0/er0 is the strength of the atomic field. The
peak amplitude of the steady-state pulse must not exceedAat.
According to f17g for xenon,Aat<23109 V/cm. Further-
more, the anharmonic-oscillator model assumes that the
magnitude ofq is less than 1, and this leads to the inequality
a−1,1.

When the strength of the electric field is extremely high,
we can neglect the effect of the atomic potential and consider
the electron as free in this field. This allows to estimate the
increase in kinetic energy due to the field as

Wkin <
seEmtpd2

2m
, s60d

wheretp is the pulse duration. Ionization does not happen if
Wkin,U0. Let us use the expression for the mass from the
formulav0

2=2U0/mr0
2. This leads to the no-ionization condi-

tion

eEmv0tp , 2U0/r0. s61d

This inequality is equivalent to the inequalitya−1,1 for
the steady-state pulse considered. However, in order to ob-
tain clear illustrations of these effects in the numerical re-
sults, the parametera has been taken both from the interval
1.01,a,1.1 and from the interval 2,a,5. The unidirec-
tional wave approximation is valid ifvp/v0!1. This limits
the density of atoms. Typical concentrations of gas or impu-
rities in glass satisfy this condition so that we can reduce the
wave equation to a first-order evolution equation. Therefore,
the solutions that we have found could be observed by send-
ing a short- and large-amplitude laser pulse in these materi-
als.

In this article, we have considered the reduced Maxwell-
Duffing model in detail. The Lagrangian density of the RMD
model was considered and three integrals of motion were
found. Two families of exact analytical solutions with posi-
tive and negative polarities, have been found as moving soli-
tary pulses. The first kind of steady-state ESP is an electro-
magnetic spike propagating in a nonlinear medium. This was
discussed earlier inf16,17,21g. Here we also obtained this
solution by an alternative method as a soliton of the bilinear
form of the RMD equations. Using the integrals of motion

and a variational method we show that these solitons are
stable. This steady-state ESP is an electromagnetic spike
propagating on a nonzero electric background. These can be
both bright and dark ESPs. Contrary to the ESP on a zero
background, here pulses of different polarities have different
amplitudes. The stability of these solutions can also be
proved by the variational method. We investigated numeri-
cally the propagation of both kinds of ESPs and demon-
strated the stability of steady-state solutions of RMD equa-
tions both on a zero background and a nonzero one. In both
cases we found that inelastic effects are not essential. Of
course, there are some perturbationsfi.e., high-frequency
modulation with large amplitude, or low-frequency modula-
tion just as Fig. 6sbd demonstratesg that can destroy the soli-
tons. Finally, we do not observe the formation of a bound
state of steady-state pulses. This does not seem possible.

By considering the evolution of modulated initial pulses,
we found that there are long-lived high-frequency breather-
like solutions of the RMD equations. The envelope of these
pulses can be described approximately by the nonlinear
Schrödinger equation. This slowly varying envelope approxi-
mation is valid when the frequency of modulation is much
greater than the eigenfrequency of the Duffing oscillators. In
that regime the breather-like pulses are robust.

More generally, the reduced Maxwell-Duffing system of
equations does not seem to be integrable contrary to its rela-
tive, the reduced Maxwell-Bloch system. It does, however,
preserve some of the regular features of the RMB system, as
evidenced by the limit of elastic collisions between pulses
and the existence of robust high-frequency breathers.
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APPENDIX: HIGH-FREQUENCY LIMIT
OF RMD EQUATIONS

Let us consider Eqs.s10d

]q

]t
+

]q

]x
+ 6mq2]q

]t
+

]3q

]t]x2 = 0. s62d

Following a multiscale expansion, we write the variableq as
the series

FIG. 8. Left panel: evolution of the initial
pulse est=0,xd=aÎsa−1d /m sechfÎsa−1dsx
−x0dgcosf5sx−x0dg with a=2. Right panel: Fou-
rier spectrum of the pulse for the initial condition.
It does not change with time. The parameterm
=0.3.
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q = esq0 + eq1 + e2q2 + e3q3 + ¯ d, s63d

where the derivatives are represented as

]

]t
=

]

]t0
+ e

]

]t1
+ e2 ]

]t2
+ ¯ ;

]

]x
=

]

]x0
+ e

]

]x1
+ e2 ]

]x2
+ ¯ . s64d

Substituting s63d into s62d and collecting the terms with
equal-order results in the following equations:

S ]

]x0
+

]

]t0
+

]3

]t0]x0
2Dq0 = 0, s65d

S ]

]x0
+

]

]t0
+

]3

]t0]x0
2Dq1 + S ]

]x1
+

]

]t1
Dq0

+ 2
]3q0

]t0]x0]x1
+

]3q0

]t1]x0
2 = 0, s66d

S ]

]x0
+

]

]t0
+

]3

]t0]x0
2Dq2 + S ]

]x1
+

]

]t1
Dq1 + S ]

]x2
+

]

]t2
Dq0

+
]3q0

]t0]x1
2 +

]3q0

]t2]x0
2 +

]3q1

]t1]x0
2 + 2

]3q0

]t1]x0]x1

+ 2
]3q0

]t0]x0]x2
+ 2

]3q1

]t0]x0]x1
+ 6mq0

2]q0

]t0
= 0, s67d

and so on. The solution of the first equation is

q0 = asx1,t1,x2,t2, . . . dexphikx0 − ivt0j + c.c., s68d

where the frequency and wave number are connected by the
dispersion relation

v = ks1 − k2d−1.

This is the dispersion relation for the linearized RMD equa-
tions.

The substitution ofs68d into s53d yields the equation

S ]

]x0
+

]

]t0
+

]3

]t0]x0
2Dq1

=eiuSsk2 − 1d
]a

]t1
− s1 + 2kvd

]a

]x1
D

+ e−iuSsk2 − 1d
]a*

]t1
− s1 + 2kvd

]a*

]x1
D . s69d

Here,u=kx0−vt0. The group velocity is

vg = dv/dk= s1 + k2d/s1 − k2d2.

From the dispersion relation we get

1 + 2kv = s1 + k2d/s1 − k2d,

thus,

sk2 − 1d
]a

]t1
− s1 + 2kvd

]a

]x1
= sk2 − 1dS ]a

]t1
+ vg

]a

]x1
D .

If we choosea=ast1−x1/vg,t2,x2, . . .d, then the terms on the
right side of Eq.s69d are equal to zero. Letq1 be zero. The
substitution ofs68d into s67d taking q1=0 into account then
results in

S ]

]x0
+

]

]t0
+

]3

]t0]x0
2Dq2

= 6imva3 exph3iuj − 6imva*3 exph− 3iuj

+ eiuSsk2 − 1d
]a

]t2
− s1 + 2kvd

]a

]x2
+ i

v + 2kvg

vg
2

]2a

]j

+ 6imvuau2aD + e−iuSsk2 − 1d
]a*

]t2
− s1 + 2kvd

]a*

]x2

− i
v + 2kvg

vg
2

]2a*

]j
− 6imvuau2a*D .

Here we use the new variablej= t1−x1/vg. As the complex
envelopea does not depend ont0 andx0, the functionq2 will
be a superposition of sin 3u and cos 3u only if the expression
in the brackets on the right-hand side of this equation is zero.
Thus, for the complex envelope ins68d we get the equation

sk2 − 1d
]a

]t2
− s1 + 2kvd

]a

]x2
+ i

v + 2kvg

vg
2

]2a

]j
+ 6imvuau2a = 0.

s70d

By assuming thata does not depend onx2, this equation can
be transformed into the standard form

is1 − k2d
]a

]t2
+

v + 2kvg

vg
2

]2a

]j
+ 6mvuau2a = 0. s71d

To conclude we have shown that the envelope of a high-
frequency modulated electromagnetic pulse evolves accord-
ing to the nonlinear Schrödinger equation. This can explain
the long lifetime of the high-frequency breather-like pulse of
the RMD model.
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